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1. Introduction

Matrix models have been considered as one of the most powerful frameworks to formulate

string theories in a nonperturbative manner. A fundamental viewpoint which links matrix

models to string theories was given by ’t Hooft [1]. There Feynman diagrams which appear

in matrix models are identified with discretized string worldsheets. However, if one takes the

large-N limit naively (the so-called planar limit), only the planar diagrams survive, which

implies the appearance of a classical string theory. One way to formulate nonperturbative

string theory using matrix models is therefore to look for a nontrivial large-N limit, in

which Feynman diagrams with all kinds of topology survive.1 The existence of such a limit

has been first demonstrated in matrix models for noncritical string theory [5 – 7], and it is

called the double scaling limit. (See also refs. [8 – 11] for recent works, in which the double

scaling limit appears in various contexts.)

It is generally believed that a similar idea can be applied also to critical string theories.

The corresponding matrix models have been proposed in refs. [12 – 14], but the existence of

a nontrivial large-N limit is yet to be confirmed. To address such an issue, the 2d Eguchi-

Kawai model [15] has been studied as a toy model. Indeed Monte Carlo simulation [16]

demonstrated the existence of a one-parameter family of large-N limits, which generalizes

the Gross-Witten [17] planar large-N limit. If one modifies the Eguchi-Kawai model by in-

troducing the twist [18], the double scaling limit can be identified with the continuum limit

of field theories on discrete non-commutative (NC) geometry [19]. The actual existence of

1Another possibility to realize string theory using matrix models is to keep N finite as in the AdS/CFT

correspondence [2], topological string theory [3] and the Kontsevich model [4].
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such limits has been demonstrated by Monte Carlo simulations in the case of NC gauge

theory in 2d [9] and 4d [11] and also in 3d NC scalar field theory [10]. In all these cases,

it was observed that non-planar diagrams indeed affect the infrared dynamics drastically

through the UV/IR mixing mechanism [20].

We consider that Monte Carlo simulation would be a powerful tool also to study matrix

models for critical string theories. Technically the IIB matrix model [13] would be the least

difficult among them since the space-time, on which the ten-dimensional N = 1 super Yang-

Mills theory is defined, is totally reduced to a point. However, the integration over the

fermionic matrices yields a complex Pfaffian, which makes the Monte Carlo simulation still

very hard [21, 22]. An analogous model, which can be obtained by dimensionally reducing

four-dimensional N = 1 super Yang-Mills theory to a point, does not have that problem,

and Monte Carlo studies suggest the existence of a nontrivial large-N limit [23].

The developments in the matrix description of critical string theories have also given

a new perspective to noncritical string theory. For instance, in matrix quantum mechanics

which describe (1 + 1)-dimensional string theory in the double scaling limit, the matrix

degrees of freedom have been interpreted as the tachyonic open-string field living on unsta-

ble D0-branes [24, 25]. Based on this interpretation, matrix models with the double-well

potential, which are known to be solvable, have been identified as a dual description of

noncritical string theory with worldsheet supersymmetry [26 – 28]. An important property

of these models is that they possess a stable nonperturbative vacuum unlike their bosonic

counterparts, and therefore one can obtain a complete constructive formulation of string

theory. It also provides us with a unique opportunity to test the validity and the feasibility

of Monte Carlo methods for studying string theories nonperturbatively. In particular we

are concerned with such questions as what kind of analysis is possible to extract the double

scaling limit, and how large the matrix size should be.

In this work we consider the simplest model [29], namely a hermitian one-matrix model

identified [28] as a dual of ĉ = 0 noncritical string theory,2 which is sometimes referred to as

the pure supergravity in the literature. We calculate correlation functions near the critical

point, and investigate their scaling behavior to extract the double scaling limit. The results

are then compared with a prediction obtained by a different approach. We hope that the

lessons from this work would be useful in applying the same method to models which are

not accessible by analytic methods.

The rest of this paper is organized as follows. In section 2 we introduce the one-matrix

model, and present some simulation details. In section 3 we obtain explicit results in the

planar limit, and compare them with the known analytical results. In section 4 we search for

a double scaling limit by using only Monte Carlo data. The results are compared with the

prediction obtained by the orthogonal-polynomial technique. In section 5 we present more

detailed comparison with the analytical prediction. Section 6 is devoted to a summary and

discussions. In the appendix we briefly review the derivation of some asymptotic behaviors

in the double scaling limit.

2The model studied in this paper was also used in ref. [30] to calculate the chemical potential of D-

instantons, which is shown to be a universal quantity in the double scaling limit [31]. These works are

generalized to other noncritical string theories [32 – 34] and discussed in various contexts [35 – 38].
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2. The model and some simulation details

The model we study in this paper is defined by

Z =

∫
dN2

φ exp (−S) , (2.1)

S =
N

g
tr

(
−φ2 +

1

4
φ4

)
, (2.2)

where φ is an N ×N hermitian matrix. We assume that the coupling constant g is positive

so that the action is bounded from below. Since the action takes the form of a double-

well, the standard Metropolis algorithm using a trial configuration obtained by slightly

modifying some components of the matrix would have a problem with ergodicity. In order

to circumvent this problem, we perform the simulation as follows.

Let us diagonalize the hermitian matrix φ as φ = UΛU−1, where Λ = diag(λ1, · · · , λN )

is a real diagonal matrix. Due to the SU(N) invariance of the model, the angular variable

U can be integrated out.3 Thus we are left with a system of eigenvalues λi

Z =

∫ N∏

i=1

dλi exp(−S̃) , (2.3)

S̃ =
N

g

N∑

i=1

(
−λ2

i +
1

4
λ4

i

)
−

∑

i<j

log |λi − λj |2 , (2.4)

where the log term in eq. (2.4) comes from the Vandermonde determinant. Due to the λ4
i

term in the action, the probability of λi having a large absolute value is strongly suppressed.

This can be seen also from the eigenvalue distribution in figure 1, which actually has a

compact support in the planar large-N limit; see eqs. (3.2) and (3.3). We therefore restrict

|λi| to be less than some value X.

We first run a simulation with a reasonably large X. By measuring the eigenvalue

distribution, we can obtain an estimate on X that can be used without affecting the Monte

Carlo results. We generate a trial configuration by replacing one eigenvalue by a uniform

random number within the range [−X,X]. The trial configuration is accepted as a new

configuration with the probability min(1, exp(−∆S̃)), where ∆S̃ is the increase of the

action S̃ (∆S̃ < 0 in case it decreases). The acceptance rate turns out to be of the order

of a few percent.4 We repeat this procedure for all the eigenvalues, and that defines our

“one sweep”.

Typically we make 500,000 sweeps for each set of parameters. We discard the first

10,000 sweeps for thermalization, and measure quantities every 100 sweeps considering

3An analogous model including a kinetic term representing the fuzzy sphere background has been studied

by Monte Carlo simulation in refs. [39, 40]. The basic idea to avoid the ergodicity problem can be applied

there as well, although in that case the angular variables U have to be treated in Monte Carlo simulation.

We thank Marco Panero for communications on this issue.
4We could have increased the acceptance rate by suggesting a number for the eigenvalue with a non-

uniform probability and taking it into account in the Metropolis accept/reject procedure. In this work,

however, we stayed with the simplest algorithm for illustrative purposes.
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auto-correlation. The statistical errors are estimated by the standard jack-knife method,

although in most cases the error bars are invisible compared with the symbol size. The

simulation has been performed on PCs with Pentium 4 (3GHz), and it took a few weeks to

get results for each value of g with the largest system size N = 2048. Note that the required

CPU time is of O(N2) thanks to the fact that we only have to deal with the eigenvalues

but not the whole matrix degrees of freedom. Otherwise the required CPU time would

grow as O(N3) at least. Note also that our algorithm allows the eigenvalues to move from

one well to the other with finite probability. Thus the problem with ergodicity is avoided.

3. The planar limit

In this section we investigate the planar limit of the model by Monte Carlo simulation.

This limit corresponds to sending the matrix size N to infinity with fixed g. It is necessary

to study the planar limit first since we have to identify the critical point, and calculate

correlation functions at that point, which will be used when we search for a double scaling

limit.

Let us define the eigenvalue density

 0
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 0.6

 0.7
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ρ(
x)

x
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Figure 1: The eigenvalue distribution ρ(x) is plot-

ted for g = 0.5, 1.0, 2.0, 3.0 with N = 32. The curves

represent the exact results (3.2), (3.3) obtained in

the planar large-N limit.

distribution

ρ(x) ≡ 1

N

〈
tr δ(x − φ)

〉
, (3.1)

from which one can calculate the expec-

tation value of any single trace opera-

tor. In the planar limit the distribution

ρ(x) is obtained analytically [29] using

the method developed in ref. [41]. For

g ≥ 1 the distribution is given by

lim
N→∞

ρ(x) =
1

πg

(
1

2
x2 + r2 − 1

)

√
4r2 − x2 (3.2)

in the range −2r ≤ x ≤ 2r, where r2 =
1
3(1 +

√
1 + 3g). For g ≤ 1 it is given by

lim
N→∞

ρ(x) =
1

2πg
|x|

√
(x2 − r2

−)(r2
+ − x2) (3.3)

in the range r− ≤ |x| ≤ r+, where r2
± = 2(1 ± √

g). Outside the specified region, the

distribution is constantly zero, and hence it has a compact support for g ≥ 1, which splits

into two for g ≤ 1. This implies a phase transition of the Gross-Witten type [17] at the

critical point

g = gcr ≡ 1 . (3.4)

Our Monte Carlo results for N = 32 shown in figure 1 agree well with the exact results in

the planar limit.
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Figure 2: The two-point correlation func-

tion 〈tr φ2 tr φ2〉c is plotted against g for var-

ious N . The solid line represents the analytic

result (3.5) in the planar large-N limit.

Figure 3: The two-point correlation func-

tion 〈tr φ tr φ〉c is plotted against g for vari-

ous N . The solid line represents the analytic

result (3.6) in the planar large-N limit.

Let us next consider two-point correlation functions 〈tr φ2 tr φ2〉c and 〈tr φ tr φ〉c, where

the suffix “c” implies that the connected part is taken. In the planar limit the correlation

functions are obtained analytically as (See appendix for derivation)

lim
N→∞

〈tr φ2 tr φ2〉c =

{
2
9

(
1 +

√
1 + 3g

)2
for g ≥ 1 ,

2g for g ≤ 1 .
(3.5)

lim
N→∞

〈tr φ tr φ〉c =

{
1
3

(
1 +

√
1 + 3g

)
for g ≥ 1 ,

1 −√
1 − g for g ≤ 1 .

(3.6)

Our Monte Carlo results for various N shown in figures 2 and 3 approach the planar limit

with increasing N .

In passing, let us consider the free energy of the system (2.1) defined by

F ≡ log Z − 1

4
N2 log g , (3.7)

where the log term is subtracted in order to make F finite in the free case (g = 0). One

can easily see that the correlation function 〈tr φ2 tr φ2〉c is related to the second derivative

of the free energy with respect to g−1/2 as

〈tr φ2 tr φ2〉c =
g

N2

∂2

∂(g−1/2)2
F . (3.8)

Therefore, the behavior (3.5) at the critical point g = 1 implies that the phase transition

is of third order in accord with ref. [17].

4. The double scaling limit

In this section we search for a double scaling limit, in which we send the coupling constant

g to the critical point gcr = 1 simultaneously with the N → ∞ limit keeping

µ ≡ Np/3(1 − g) (4.1)

– 5 –
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[1
-<
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N

Figure 4: The observable 2 − 〈tr φ2 tr φ2〉c
at the critical point g = 1 is plotted against

N in the log-log scale. The straight line

represents a fit to the power law behavior

N−1.7(3).

Figure 5: The observable 1 − 〈tr φ tr φ〉c at

the critical point g = 1 is plotted against

N in the log-log scale. The straight line

represents a fit to the power law behavior

N−1.00(2).

fixed. We investigate whether the quantities

A(µ,N) ≡ −N q/3
(
〈tr φ2 tr φ2〉c − 2

)
, (4.2)

B(µ,N) ≡ −N r/3
(
〈tr φ tr φ〉c − 1

)
(4.3)

have large-N limits as functions of µ for some choice of the parameters p, q and r. In

eqs. (4.2) and (4.3), we have subtracted the values in the planar large-N limit at the

critical point g = 1, which are 2 and 1, respectively, for each correlation function; see,

eqs. (3.5) and (3.6).

In fact, by merely looking at the behavior of the planar results (3.5) and (3.6) near

the critical point g ∼ 1, one can readily deduce the existence of a double scaling limit for

µ ∼ ±∞, where the ± sign corresponds to the behavior for g → 1±ǫ, respectively. Namely,

plugging g = 1 − µN−p/3 into (3.5) and (3.6), one obtains

lim
N→∞

A(µ,N) =

{
2µ for µ ∼ ∞ ,

µ for µ ∼ −∞ ,
(4.4)

lim
N→∞

B(µ,N) =

{√
µ for µ ∼ ∞ ,

0 for µ ∼ −∞ ,
(4.5)

with q = p and r =
p

2
. (4.6)

When we search for a double scaling limit, we have to impose (4.6) in order to ensure

the scaling behavior at large |µ|. The nontrivial question then is whether we can choose

the parameters within the constraints (4.6) in such a way that the scaling extends to small

|µ|. In general, the planar results can be used in this way to impose some constraints on

the parameters that appear in searching for a double scaling limit. A similar strategy has

been used, for instance, in ref. [16, 9, 10]. We emphasize, however, that this is just meant

– 6 –
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N=256
N=512

exact

-1
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exact

Figure 6: The quantity A(µ, N) is plot-

ted against µ for N = 8, 16, · · · , 512 with

p = q = 2.0. The solid line represents the

result (5.5) obtained in the double scaling

limit.

Figure 7: The quantity B(µ, N) is plotted

against µ for N = 8, 16, · · · , 512 with p =

2.0 and r = 1.0. The solid line represents

the result (5.6) obtained in the double scaling

limit.

to make the analysis simpler, and that the relation (4.6) would come out anyway when we

attempt to optimize the scaling behavior at large |µ|.
Let us search for a scaling behavior at the particular point µ = 0. This corresponds

to g = 1 for any choice of p due to (4.1), and therefore, we can actually determine q and r

without using (4.6). In figure 4 we plot the r.h.s. of (4.2) omitting the factor N q/3. The

observed power behavior implies q = 1.7(3). Similarly from figure 5, we obtain r = 1.00(2).

Using this value of r, the other exponents p and q may be obtained from the relation (4.6)

as p = q = 2.00(4). This is consistent with the value of q extracted from figure 4 directly.

The latter has a larger error bar, though. The reason for this is that the quantities plotted

in figures 4 and 5 are of the order of 1
N2 and 1

N , respectively.

Now let us see whether these values of p, q and r make the quantities A(µ,N) and

B(µ,N) scale also for µ 6= 0. Using the Monte Carlo data shown in figure 2, we plot the

quantities as functions of µ. Figures 6 and 7 show the results. The scaling functions given

below in eqs. (5.5) and (5.6) are also plotted for comparison. The Monte Carlo results

for A(µ,N) show a nice scaling behavior, and they agree with the prediction (5.5). On

the other hand, the quantity B(µ,N) scales and agrees with the prediction (5.6) only in

the µ & 0 region. In the µ . 0 region, we observe some tendency towards scaling as N

increases up to N = 512, but the convergence to the prediction (5.6) seems to be slow.

This behavior is due to the next-leading 1/N corrections, as we discuss in the next section.

In fact the analysis based on the orthogonal polynomial technique [5 – 7] suggests the

existence of a double scaling limit with

p = q = 2 and r = 1 , (4.7)

which agrees with our observation. In this limit the model (2.2) is conjectured [28] to be a

dual description of the ĉ = 0 noncritical string theory, where the parameter µ is identified

with the cosmological constant in the corresponding super Liouville theory. Note that we

are able to deduce the existence of the double scaling limit only from Monte Carlo data.
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Figure 8: The observable 〈tr φ2 trφ2〉c is

plotted against a(≡ N−1/3) for various µ

with N = 32, 64, · · · , 2048. For each µ we

fit the data to the behavior (5.1) without the

O(a4) terms treating h(µ) as a fitting param-

eter.

Figure 9: The observable 〈tr φ tr φ〉c is plot-

ted against a(≡ N−1/3) for various µ with

N = 32, 64, · · · , 2048. For each µ we fit the

data to the behavior (5.2) without the O(a3)

terms treating h(µ) as a fitting parameter.

Let us also note that due to eq. (3.8), A(µ,N) is related to the “specific heat”

C(µ,N) ≡ ∂2F

∂µ2
− ∂2F

∂µ2

∣∣∣∣
µ=0

(4.8)

as

A(µ,N) = −1

4
N (q+2p−6)/3

{
C(µ,N) + O

(
N−2p/3

)}
. (4.9)

Therefore, the scaling of A(µ,N) with the choice (4.7) implies that the “specific heat”,

which has a physical meaning in the dual string theory, becomes finite in the double scaling

limit.

5. Next-leading 1/N corrections

So far we have been analyzing our Monte Carlo data without using the knowledge obtained

from analytical results. The purpose of this section is to discuss more detailed behaviors

in the double scaling limit which are obtained analytically, and to see whether our Monte

Carlo data reproduce those behaviors as well.

As we briefly review in the appendix, one can actually derive the asymptotic large-N

behavior of the correlation functions (for even N) in the double scaling limit as

〈tr φ2 tr φ2〉c = 2 −
{

µ + h2(µ)
}

a2 − 1

2

{
µ h(µ) − h3(µ)

}
a3 + O(a4) , (5.1)

〈tr φ tr φ〉c = 1 − h(µ) a − 1

4

{
µ − h2(µ)

}
a2 + O(a3) , (5.2)

where we have introduced a parameter a ≡ N−1/3, and h(µ) is a function which satisfies

the differential equation [42]

µ h(µ) = h3(µ) − 2h′′(µ) , (5.3)

– 8 –
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and the boundary conditions

h(µ) ∼
{√

µ for µ ∼ ∞ ,

0 for µ ∼ −∞ .
(5.4)

Equation (5.3) is nothing but the Painleve-II equation, which is proven [43] to have a unique

real solution5 under the boundary conditions (5.4). The solution is obtained numerically in

ref. [44] to high accuracy, and we use it in plotting the exact results in figures 6, 7 and 10.

From (5.1) and (5.2), the large-N limits of the quantities (4.2), (4.3) are obtained as

lim
N→∞

A(µ,N) = µ + h2(µ) , (5.5)

lim
N→∞

B(µ,N) = h(µ) , (5.6)

which we plot as exact results in figures 6 and 7. Plugging in the boundary conditions (5.4),

we reproduce eqs. (4.4) and (4.5) obtained from the planar results.

The analysis in the previous section therefore amounts to extracting the leading 1/N

corrections in (5.1) and (5.2). The reason for the observed slow approach to the limit (5.6)

for µ . 0 is that the coefficient of the O(a) term in the expansion (5.2) becomes much

smaller than that of the O(a2) term as µ decreases due to the boundary conditions (5.4).

It would therefore be interesting to

 0

 0.5

 1

 1.5

 2

 2.5

-1  0  1  2  3  4  5  6

h(
µ)

µ

exact result

Figure 10: The crosses and the circles represent the

function h(µ), which is extracted from figures 8 and 9,

respectively. The solid line represents the solution of

the Painleve-II equation.

see whether the next-leading 1/N cor-

rections in eqs. (5.1) and (5.2) are re-

produced by Monte Carlo simulation.

In figure 8 we plot 〈tr φ2 tr φ2〉c against

a for various µ. Indeed the data can be

nicely fitted to the behavior (5.1) with-

out the O(a4) terms, where h(µ) is de-

termined as a fitting parameter by opti-

mizing the fit for each µ. In figure 9 we

plot the observable 〈tr φ tr φ〉c against

a for various µ. Again the data can

be nicely fitted to the behavior (5.2)

without the O(a3) terms, where h(µ)

is determined similarly. The function

h(µ) obtained in this way is plotted in

figure 10. The crosses and the circles represent the results obtained from 〈tr φ2 tr φ2〉c and

〈tr φ tr φ〉c, respectively, which turn out to be consistent with each other within error bars.

Furthermore the results agree with the solution of the Painleve-II equation (5.3) with the

boundary conditions (5.4).

6. Summary

In this paper we have shown how one can use Monte Carlo simulation to search for a

double scaling limit, and, if it exists, to obtain the corresponding scaling functions. For

5In the case of φ3 matrix model, which corresponds to the noncritical string theory without worldsheet

supersymmetry, one can obtain only one boundary condition, since one can approach the critical point only

from one direction. Accordingly the solution of the Painleve equation has a one-parameter ambiguity [6].

This is essentially because the vacuum of the matrix model is nonperturbatively unstable. The ambiguity

arises from how one regularizes the instability. The model we study in this paper does not have this problem.
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that purpose we studied a solvable one-matrix model which has recently been proposed

as a constructive formulation of noncritical strings with worldsheet supersymmetry. In

particular, we have shown how the results in the planar limit provide useful information

in such an investigation. The required matrix size is not very large in most cases, but we

have also encountered a case in which the approach to the large-N limit turns out to be

slow due to large next-leading 1/N corrections.

Considering that even a simple two-matrix model are not solvable except for some

special cases [45], we believe that Monte Carlo simulation provides a powerful tool to

investigate the universality class of matrix models in the double scaling limit. For instance,

in ref. [46] a string field theory of minimal (p, q) superstrings has been constructed from the

two-cut ansatz for the two-matrix model. It would be interesting to confirm their results

by taking the double scaling limit explicitly.

In general, if there exists a continuous phase transition in the planar limit, one has a

chance to take the double scaling limit by approaching the critical point with increasing

N . How generically this holds needs to be investigated. For instance, it is known that

the unitary matrix model [17] has a third order phase transition, which allows a double

scaling limit [47]. The obtained limit belongs to the same universality class [42] as the one

studied in this paper. Whether a double scaling limit defines a sensible nonperturbative

string theory is also an important issue, which was addressed in refs. [23, 48, 49] by Monte

Carlo simulation. We hope that Monte Carlo studies of matrix models will also shed light

on nonperturbative dynamics of critical strings.
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A. Derivation of the asymptotic behaviors (5.1) and (5.2)

The prediction for the present model is obtained by the orthogonal-polynomial technique,

which is a powerful tool to calculate various quantities in the double scaling limit (see [50]

for a review). In this appendix we briefly review the derivation of the asymptotic behav-

iors (5.1) and (5.2) for the reader’s convenience.

Using the orthogonal-polynomial method, various quantities in the matrix model can

be expressed in terms of the coefficients Rn (n = 1, 2, 3, · · · ) characterized by the recursion

formula

g
n

N
= Rn (−2 + Rn+1 + Rn + Rn−1) . (A.1)

For example, the correlation functions defined by eqs. (5.1) and (5.2) are expressed as

〈tr φ2 tr φ2〉c = RN (RN+1 + RN−1) , (A.2)

〈tr φ tr φ〉c = RN . (A.3)
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In the planar limit (i.e., the N → ∞ limit with fixed g), the asymptotic behavior of

the coefficients Rn is given by

Rn =

{
1
3

(
1 +

√
1 + 3ξ

)
for ξ ≥ 1 ,

1 − (−1)n
√

1 − ξ for ξ ≤ 1 ,
(A.4)

where ξ = gn/N is regarded as a continuous variable. Note that, for ξ ≤ 1, the asymptotic

behavior of Rn is given by two continuous functions depending on the parity of n. By

plugging (A.4) into (A.2) and (A.3), one obtains the planar results (3.5) and (3.6).

Next we consider the double scaling limit; i.e., the N → ∞ limit with fixed µ defined

by (4.1) with p = 2. This implies that the coupling constant g approaches the critical point

gcr ≡ 1 as

g = 1 − µa2 , (A.5)

where we have defined a ≡ N−1/3 as before. In order to obtain the asymptotic behaviors

of (A.2) and (A.3) in that limit, we need to know the behavior of the coefficient Rn for the

region of n, which can be parametrized as

ξ = g {1 − (t − µ)a2}
= 1 − ta2 + O(a4) (A.6)

using the new variable t. For large |t|, we can deduce the asymptotic behavior of Rn from

the planar result (A.4). Namely, by plugging (A.6) into (A.4) and by expanding it with

respect to a, we obtain

Rn =

{
1 − t

4a2 + O(a4) for t ∼ −∞ ,

1 − (−1)n
√

ta + O(a3) for t ∼ ∞ .
(A.7)

This motivates us to adopt the Ansatz [51, 42]

Rn = 1 − (−1)nH(t) a + F (t) a2 , (A.8)

where H(t) and F (t) are regarded as continuous functions of t, which can be expanded

with respect to a as

H(t) = h(t) + O(a2) , (A.9)

F (t) = f(t) + O(a2) . (A.10)

Substituting the Ansatz (A.8) into (A.1), we obtain

h′′(t) = 2 f(t)h(t) , (A.11)

h2(t) = 4 f(t) + t (A.12)

as consistency conditions. Eliminating f(t), we obtain the Painleve-II equation (5.3). The

asymptotic behavior (A.7) translates into the boundary condition6 (5.4). Plugging (A.8)

into eqs. (A.2) and (A.3), we obtain the asymptotic behaviors (5.1) and (5.2).

6This is analogous to the case of unitary matrix model [52].
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